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Kurzfassung

Die vorgelegte Bachelor-Arbeit untersucht die Möglichkeiten der Implementierung von
nicht inkludierten Beleuchtungstechniken in einer State-of-the-Art Spiel-Engine.

Im Speziellen wird demonstriert, wie Shadow Volumes in Unreal Engine 4 in einem
Plugin implementiert werden können.

Diese Arbeit diskutiert die theoretischen und praktischen Aspekte der Unreal Engi-
ne im Zusammenhang mit Shadow Volumes und liefert detaillierte Informationen über
alle Implementierungsschritte. Es werden die dabei zu beachtenden Details beschrieben
und die erreichten Ergebnisse präsentiert.
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Abstract

The presented bachelor thesis project explores the possibilities of implementing custom
lighting techniques in a state-of-the-art game engine.

Specifically, Unreal Engine 4 is analyzed for the feasibility of implementing shadow
volumes in a shader-centric plugin.

The thesis discusses the theoretical and practical background of Unreal Engine and
of shadow volumes, and provides detailed information on every implementation step. It
shows the challenges of customization and the results achieved.
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CHAPTER 1
Introduction

1.1 Motivation

Video and computer game development has never been more accessible than today. Not
only is there a plethora of material available online and offline, in books, websites and
video tutorials on the subject matter [1][2][3][4][5][6], but there are also countless libraries,
frameworks and game engines to let content creators focus on the particular aspects of
game design that they are most interested in. There is a broad spectrum of available
tools from specific pre-defined functionality to all-in-one game design solutions. The
Unreal Engine [7] is located on the latter side of this spectrum. It provides a complete
solution for content creators with an exhaustive set of tools at their disposal to create
games of any scope, from hobbyist projects through independent small games to massive
AAA titles. Rivalry for market share with competing solutions (like Unity [8]) creates
a healthy competition, but also some specialization between solutions. Fueled by its
popularity, the Unreal Engine sets the industry standards and the state-of-the-art in real
time rendering as well, balancing high performance with superior graphical fidelity, while
providing cross-platform development solutions and ease of use. Therefore, for this thesis
we choose to explore the possibilities of the Unreal Engine in terms of customization of
the rendering module and especially for using custom shaders with the engine. This is
motivated by the re-emerging interest in the Unreal development community in using
custom shaders in Unreal Engine [9][10][11]. Custom geometry shaders are a special
interest in the community [12][13], a topic for which very few information sources are
available. In particular we choose to examine how shadow volumes can be implemented
in Unreal Engine, because of their possibilities in special applications like virtual reality
sci-fi/horror games and for their performance potential.
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1. Introduction

1.2 Problem Statement

The performance, rendering quality and relatively good accessibility of the Unreal Engine
comes at a price. Although a lot can be achieved with the customization options provided
in the editor, the realization process of specific methods can prove difficult. While a large
number of users is content with the features and techniques provided out-of-the-box,
even a short browsing of the community platforms (forums, wikis, etc.[5][6]) shows the
ever-present wish of developers to push the spectrum of possibilities beyond what the
Unreal Engine provides, extending its capabilities in all application contexts. There are
different ways to create modifications, albeit often at the cost of performance and/or
compatibility. This trend is aided by the fact that the complete Unreal Engine source
code is accessible online, making the analysis of the inner workings of the engine from
the highest level overview to the lowest level specifics possible. Therefore, exploring the
possibilities of renderer customization while observing the related structures of the engine
is of interest for both practical and scientific reasons as well.

1.3 Contributions

In the following report we provide a detailed description about an exploratory implemen-
tation process of a custom lighting technique in Unreal Engine 4. Its main goal is to
discover how custom data structures, shader programs and interfaces can be integrated
into a state-of-the-art, high performance game engine. This exploration is driven by
several different motivating forces: Understanding the composition and organization of
such a game engine yields highly desirable insight into current trends and techniques
used in real-time rendering and in a game development work flow. Finding feasible
ways to integrate one custom technique can help other similar endeavors achieve similar
goals. Finally, adding the chosen technique (shadow volumes) to the current version of
Unreal Engine (4.14) can open new possibilities in certain game projects. Through our
exploratory implementation we show that implementing shadow volumes in Unreal Engine
is a non-trivial task, particularly due to the way the engine handles custom rendering in
plugins, and the missing topology descriptions needed to make use of custom geometry
shader programs suitable for shadow volume construction. The limitations posed by the
Unreal Engine on using stencil buffers and on accessing scene depth values of the main
render thread from our plugin restricts our implementation to a simplified version of
the shadow volumes algorithm, in which only one convex scene object is considered as
shadow caster.

Still, although with these limitations, which we discuss in further detail in Section 4.3,
our implementation succeeds in

• defining custom shader programs in a plugin,

• loading these shader programs into Unreal Engine,
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1.4. Thesis Structure

• creating the shadow volumes in a custom geometry shader (with the help of core
engine modifications),

• transferring the resulting render target data back to the editor,

• applying the shadows to the scene from the editor through a post-process material.

In this thesis we provide a detailed description of all the steps necessary to achieve the
set goals, we present the evaluations of the developed algorithm and we formulate future
improvement possibilities as well.

1.4 Thesis Structure
The remainder of this thesis is structured into four main chapters. In the following
Chapter 2 we provide some background details about shadow calculations in general
and shadow volumes in particular, as well as about the development history, current
form and rendering-related specifics of Unreal Engine. Chapter 3 contains a detailed,
step-by-step discussion of the exploratory implementation, focusing on insights gained
about the rendering pipeline of the engine. In Chapter 4 we showcase the evaluation of
the results, both in terms of performance and correctness. In Chapter 5 we summarize
the conclusions of the research and implementation process, and discuss possibilities of
future development.
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CHAPTER 2
Background and Related Work

In this chapter we provide background information about the chosen technique and the
environment in which it is implemented. In Section 2.1 we discuss the details of shadow
volumes, their theoretical foundation, their past use and their limitations. In Section 2.2
we discuss Unreal Engine, its development, the specifics of its rendering pipeline and
some details on custom programming possibilities and difficulties.

2.1 Shadow Calculations

Displaying shadows is one of the most important additions to computer graphics when it
comes to realistic representations of a scene. Shadows contribute to realism by providing
information about the relative positions of scene objects to each other and about the
location of light sources in the scene to the observer. Without shadows, objects tend
to look like they are floating in space. By including this graphics feature, the objects
are perceived as affixed to their relative locations in the scene. Furthermore, shadows
can have special importance in computer and video games by contributing to game
mechanics, like aiding player character positioning onto platforms or providing additional
information on objects outside the player’s view, etc. [14]).

Because this is such an important feature in computer graphics, a substantial num-
ber of different approaches have been suggested and established over time. Some of
them are a reflection of the time they were conceived in (e.g. single-sample soft shadows,
penumbra maps, smoothies, etc. [14]), while others are well established and continually
refined in an effort to optimize them for current hardware and software capabilities
and requirements. We need to make one important distinction before continuing in
the exploration of shadow calculation methods: Shadowing techniques in the Unreal
Engine can be categorized as static or dynamic. Static shadows are not calculated at
runtime, but are created in editor when constructing the game world and are baked
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2. Background and Related Work

into textures (lightmaps or light cache [15]) of object models. While these provide an
extensive addition to the realism of a scene (and have in fact an important role in Unreal
Engine as well), this report will not feature them further. We focus on dynamic shadow
calculations, since these types of techniques provide the means to create shadows suitable
for the aforementioned roles in computer and video games. This means that shadow
locations and contributions to object color have to be calculated and applied in real-time,
at the runtime of the application (game). For this thesis, we chose shadow volumes as an
exemplary technique to implement.

2.1.1 Shadow Volumes

The concept of shadow volumes is one which has a rich history of development [16], but
which already seems to have the period of its highest popularity behind it, as far as its
use in computer and video games is concerned [16][17]. To explore the circumstances of
why the use of shadow volumes is not found more often in current games, it is important
to understand the advantages and disadvantages that this technique has to offer. A
version of shadow volumes was first suggested by Franklin C. Crow in his 1977 paper
Shadow Algorithms for Computer Graphics [18] and has been iteratively expanded upon
in parallel with graphics hardware development [19][20][21][22]. The idea behind this
technique is that the object casting the shadow is used to construct a new object, the
shadow volume. This volume can then be used to check whether any given point of the
scene is inside or outside of it, and therefore, whether the point is in shadow or not. The
construction of the shadow volume utilizes the position of the light and the shadow caster
object. In a first step, the outline/silhouette of the object has to be determined from
the point of view of the light [14][23]. For this purpose, the face normals of the object
are queried. The list of the silhouette edges can be constructed with the help of two
observations about an edge: a.) One of the adjacent triangles faces the light source. b.)
The other adjacent triangle faces away from the light source. If both conditions are met,
the edge has to be part of the list of silhouette edges. To realize this efficiently, a suitable
data structure has to be set up where faces can be efficiently queried through edges.
Once the list of silhouette edges is constructed, the shadow volume can be constructed as
well. This can be done by using the triangles of the model facing the light source as front
cap of the volume and the triangles facing away from it as back cap. The two caps are
connected through appropriately constructed new triangle strips. Figure 2.1 illustrates
this idea. To actually yield a volume usable for shadow calculations, vertices of the back
cap are projected along the direction vector from the light source to the respective vertex
of the back cap. This projection can happen either to infinity or to an appropriately
long distance. To prevent visual artifacts on the surface of the object facing the light
source, the vertices of the front cap are also moved along the same direction vector. For
the vertices of the front cap, only a very small bias is used. This way the faces of the
front cap get positioned behind the faces of the object from the point of view of the light,
preventing shadowed areas from appearing on the directly lit surface. The construction
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of the volume can be achieved through different methods. One common and modern way
of doing so is by using the geometry shader stage of modern rendering hardware. With
the appropriate setup, this allows for an efficient and straightforward evaluation of face
normals, deconstruction and reassembly of models and insertion of new triangles [14][24].
Therefore, the exploratory implementation described in this report follows this approach.

Figure 2.1: Projecting the silhouette edge and constructing the connecting triangle strip.
Reprinted from [24].

To use this volume for shadow calculations, a technique is necessary to decide which
points of a scene lie inside it and which do not. The points inside this volume are the
ones where the caster object blocks the light emanating from the light source. This can
be done in several different ways.

Most techniques use the stencil buffer, which is ubiquitous on modern rendering hardware.
It provides an efficient way of stepping though the boundaries of the volume and counting

7



2. Background and Related Work

the transitions. This can be done by shooting a ray from the camera to a scene object
and incrementing or decrementing corresponding fragment values in the stencil buffer
with each crossing of the hull of the volume. This requires different rendering steps:
First, the scene is rendered without the volume to obtain z-buffer (depth) values for
each fragment from the camera’s point of view of the whole scene. Then the shadow
volume is rendered twice, with back-faces and front-faces each rendered once to be able
to perform the z-value tests on them. These z-tests can be realized in different ways,
with each technique having advantages and disadvantages alike. The original technique,
as introduced in [25], is based upon incrementing/decrementing the corresponding stencil
buffer values if the z-test is passed by the object on comparison with the shadow volume
rendered with back-face/front-face culling. To achieve correct shadowing in this way,
three rendering passes are needed. In the first pass, the scene is rendered with specular
and diffuse lighting into one target buffer, and with ambient lighting into another. In
a second pass, only the stencil buffer is targeted. Shadow volume quads are rendered,
with depth test enabled, into this stencil buffer. Stencil values are incremented for front
facing shadow volume quads and decremented for back facing ones. In the third pass,
the specular/diffuse render results are added to the ambient buffer only where the stencil
buffer has the value of zero, ensuring only ambient lighting in shadowed areas [14].

This however can create problems in certain specific situations. For example, when
the shadow volume is in a position where it gets clipped by the near-clip plane [19].
This problem can create unacceptable visual artifacts (missing shadows) and there is no
straightforward solution to counter it when using this approach. An alternative method
to z-value testing has also a strong connection to the 2004 computer game Doom 3
by ID software [26] and unofficially bears the name of the senior programmer of the
game, for popularizing this concept. The z-fail method, also known as Carmack’s reverse
[19], is essentially comprised of the same steps, but reverses the order of the traversal.
Here, stencil buffer values are incremented on depth-test fail with front-face culling and
decremented on depth-test fail with back-face culling. Figure 2.3 provides an illustration
of this approach. This technique offers a very elegant solution to the near-plane clipping
problem. The near-plane clipping has no effect on the shadow rendering, because stencil
buffer values are updated only if a quad’s distance from the viewers position is bigger
than the corresponding scene depth value[14]. However, the z-fail method has its own
disadvantage of a different nature: Since it is protected by software patent, its use is
restricted [14][27]. This is one of the reasons the source code of the aforementioned Doom
3 had to be altered when releasing it to the public in 2011 [28]. Motivated by certain
particularities in the Unreal Engine rendering pipeline, the exploratory implementation
presented in this report does not make use of the stencil buffer as featured in these most
common approaches. Instead, we use a custom solution that integrates well into the
structures provided by the Unreal Engine. Further implementation details are discussed
in Chapter 3 .
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2.1. Shadow Calculations

Figure 2.2: Volume shadows in Doom 3. Reprinted from [29].
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Figure 2.3: Stencil operations on shadow volume hull crossing. Reprinted from [24].

Factoring in all these particularities of the chosen technique, the advantages and disad-
vantages of shadow volumes are easily outlined. The biggest hindrance for using this
technique in modern computer and video games is that the form of the volume, therefore
the shape of the shadow, is directly connected to the shape of the casting objects mesh.
For optimization purposes, a large number of types of in-game scene objects use alpha
transparency to believably represent real-life objects exhibiting certain rich structural
traits. These include foliage and flora in general, mesh materials (like nets, fences),
flexible linkages, etc. [14][17]. Since the shadow volume is constructed from the edges of a
primitive, alpha transparency cannot be taken into account. This causes the shadows cast
by such objects to take the shape of those coarse primitives (faces or quads) from which
the object is constructed. This in fact is a broader problem, affecting any kind of (par-
tially) transparent object. The current requirements towards state-of-the-art graphical
fidelity demand the extensive use of smoke, fog, water and similar effects, and the estab-
lished implementations of these prohibit the use of shadow volumes in most circumstances.

A different, but important reason for the decline in use of shadow volumes in games is
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2.2. The Unreal Engine

that since this technique produces hard, clean shadows, it only yields realistic results
under special circumstances. Appropriate scenes have to play out in dark, fairly tight
spaces (narrow corridors, small rooms) illuminated only by a small number of lights, since
these circumstances would be the ones creating shadows with similarly hard, well defined
outlines in real life situations. There are several suggestions of how to circumvent these
shortcoming, like producing soft shadows from shadow volumes [21][22]. However, the
added effort in implementation and the reduction in computational efficiency makes a
strong case for applying the technique mainly for environments that are more suitable to
its strengths. (In fact, one of the most notable examples of application of shadow volumes,
the aforementioned Doom 3 [26] is set in the most archetypical scenario for this technique
to be effective: In a dimly lit horror/sci-fi space (moon) station, explored from a first per-
son view. Figure 2.2 depicts a scene from this game showcasing its use of shadow volumes.)

However, with the currently reignited interest in virtual reality, especially in the gaming
industry, such application scenarios just might be in the center of attention. It can
be difficult to asses the directions virtual reality gaming will take with the increase in
technical capabilities and the decrease in price of consumer grade virtual reality hardware,
but current trends show a boom in (survival) horror themed virtual reality games [30][31].
These type of games tend to set the scene for the player along the guidelines detailed
above, and thus have the potential to take advantage of the strengths of this technique.
At the same time, the impact of its shortcomings can be concealed by the fact that
environments are often dark, narrow and sparingly but harshly lit for effect.

For virtual reality applications, performance considerations are of even higher importance,
since low frame rates can be responsible for player health issues, such as headaches, motion
sickness, etc. [32]. Variants of the chosen technique could be very well suited for this,
since the shadows produced are fully dynamic and provide self-shadowing on any form of
surface the shadows falls upon without additional impact on computational resources,
above the resources already used for the shadow volume computation. These potential
advantages for virtual reality gaming applications provide the reason for this report to
explore the possibilities of how this technique can be implemented in a state-of-the-art
game engine.

2.2 The Unreal Engine

This section discusses details of the chosen environment, Unreal Engine 4. In Subsec-
tion 2.2.1, we provide a brief overview of the development history, leading up to the
current form of the engine. In Subsection 2.2.2, we take a quick glance at the render-
ing pipeline in Unreal Engine. In the final Subsection 2.2.3 we discuss details on the
customization of the renderer.
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2.2.1 Development of the Unreal Engine

The Unreal Engine [7] is one of the most notable competitors in video and computer
game engines available to the industry today. It has been created by Epic Games [33],
originally conceived for their 1998 video game Unreal [34]. Throughout several sequels
and iterations of the game (Unreal Tournament, Unreal Championship, Unreal II: The
Awakening, etc. [35]), the engine was continually developed and extended to industry
standards in-house at Epic Software. In 2009, a major shift occurred in the corporate
philosophy surrounding the engine, when the Unreal Development Kit, a (under specific
circumstances) free version of the Unreal Engine 3 SDK, was made available for external
game developers and content creators [36]. The Unreal Development Kit was a pre-built
end-user game creation tool, which quickly gathered popularity among game developers
and modders alike. The Unreal Engine known today is the result of a second major
change on the part of Epic Software, with the release of Unreal Engine 4 in May 2012
[37]. This new version brought with it a large scale restructuring of financial plans for
content creators in incremental steps, at the end making the complete version of the
engine with all of its included tools and assets essentially free to use for developers
under a certain annual revenue. Alongside these changes, Epic Software released the
complete Unreal Engine source code to the public (naturally with intellectual property
rights retained, as further detailed in [38]). It granted registered members of the Un-
real community full access to study and modify the inner workings of the engine and
associated first party tools [39]. This allowed the engine to gain increasing interest
from small, independent content creators and hobbyist developers, forming a massive
community around all the different aspects of Unreal Engine, from game and content
creation to engine modification and development. This process helped the Unreal Engine
to a very high level of popularity in the video game industry, which is still continuing
today: High quality independent and studio-made games are released, powered by the
Unreal Engine, and there is high interest from gamer-turned-developers in experimen-
tation and content creation with the Unreal Engine. This widespread popularity is a
motivating force for scientific, academical research as well, since the Unreal Engine con-
tinually pushes and defines the state-of-the-art in real-time rendering with every iteration.

For the popularity to emerge and be sustainable, the engine has to be in accordance
with high standards. The ever growing, multi-billion dollar video game industry [40]
demands the most cutting edge in graphical fidelity and computational performance
alike. This means, that the rendering pipeline has to be adaptable for new techniques
and developments, but, at the same time, has to be highly self-contained and optimized.
Since, as discussed above, the Unreal Engine has a considerable development history,
optimization is equivalent to a highly integrated interplay of different engine modules
created and assembled over time to reach the set performance goals. This makes the
Unreal Engine as a whole and its rendering pipeline in particular not only a highly inter-
esting subject to study, but also a highly complicated structure to modify. Implementing
custom techniques can also have a considerable performance impact on the rendering,
depending on how much low-level requirements of said technique align with the structure

12



2.2. The Unreal Engine

of the rendering pipeline.

It is to be noted, that the Unreal Engine package, as it currently exists, is stream-
lined for the needs of content creators. Content creators require flexibility and technically
assisted artistic freedom to an extent where they can realize their vision. This means,
that the tools provided have to enable a customization to get content into a desired
form in some way, but not necessarily the availability of a particular technique to do so.
This has advantages and drawbacks as well, as already noted above: The tight, strongly
coherent modules of the rendering pipeline allow for state-of-the-art performance and
graphical fidelity partially by restricting the spectrum of methods employable by the
user.

2.2.2 The Rendering Pipeline

To be able to implement custom lighting techniques, it is necessary to know the details
about the rendering pipelines operation. Therefore, in this report we provide a brief
overview of the high-level structuring of the Unreal Engine renderer and include references
to sources that contain further details. The Unreal Engine employs a threaded rendering
concept, where the renderer is run in its own thread, that is slightly delayed (1-2 frames)
from the game thread [41]. This necessitates a careful memory management approach
as to preserve data consistencies and avoid race conditions between the rendering and
the game thread. To assure that all functionalities exhibit a deterministic behavior, all
Unreal object types have two different internal representation: one in the game thread
and one in the render thread. This is true for both object data and object functions,
with a rigorous set of ownership and transfer rules to every one of them. This is one par-
ticularity that makes the unreal Engine highly efficient, but also fairly hard to customize,
since back-and-forth of data transfer and inter-thread communication between the game
and the rendering pipeline is very strictly regulated, with a deep hierarchy of objects
encapsulating each other in different ways.

2.2.3 Renderer Customization

The complex structure of the rendering module makes its custom programming a fairly
challenging task. The corresponding Unreal Engine documentation [42] provides some
hints and pointers as to where to look for certain details, but first and foremost states
that the best place to begin exploring this question is to review the code itself, starting
with the FDeferredShadingSceneRenderer::Render method . Nonetheless, Unreal Engine
documentation is very useful, because it provides the details on the inter-thread relations
and connections of some graphics related objects. It is also essential for containing a
high-level overview of the hierarchy of rendering-related modules and their execution
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2. Background and Related Work

order in each rendering cycle.

The Unreal Engine contains two different approaches (paths) for rendering meshes:
A static and a dynamic rendering path. According to the information provided in [42] on
the two different approaches, the static path is more efficient but also more rigid, while
the dynamic path allows more control over certain parameters, but takes a higher toll
on performance. They make use of drawing policies, which incorporate and organize
geometry, materials and shader configuration into coherent units that are specific to a
given render pass. Both rendering paths use vertex factories for this purpose, which
contain specific representations of geometry and material definitions. Drawing policies are
also responsible for providing data to the render hardware interfaces (RHIs). RHIs are a
low level abstraction layer that allows to program the Unreal Engine rendering module
in a platform independent manner. RHIs contain descriptions of feature sets that allow
the targeting of required features instead of specific platforms, discarding the need of a
graphics-API-level understanding of the environment. These feature sets are encapsulated
in Unreal Engine feature level definitions (ERHIFeatureLevels). Examples given in the
Unreal Engine documentation contain descriptions of the following ERHIFeatureLevels:

• SM5, mostly corresponding with Direct3D 11 Shader Model 5, but with limitations
imposed by OpenGL 4.3 on the usable number of textures.

• SM4, being the same as SM5, but without cubemap arrays, tessellation capabilities
and compute shaders.

• ES2, usable in most mobile environments, generally being in line with OpenGL
ES2 capabilities.

The main advantage in using the RHI system lies in defining the program features in
such feature sets, and letting Unreal Engine negotiate the supported features on the
graphics-API-level. If a certain feature is not supported, Unreal Engine can drop down
to the next feature level below until one is found where the platform supports all features
required [42].
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CHAPTER 3
Implementation

This report follows an exploratory approach for the purpose of assessing the possibilities
of implementing a custom lighting algorithm in a state-of-the-art rendering engine. The
presentation of the implementation steps therefore reflects on this by providing a step-
by-step description of this exploration, resembling the actual progress of the realization
process. The structure follows the logical, categorical hierarchy of different parts of the
rendering pipeline and thus provides a reflection on the pipeline itself. Therefore, in this
chapter we discuss the implementation process as follows: In Section 3.1 we describe
the process of including custom shaders in Unreal Engine 4 in general. We present
details of accessing the geometry shader stage of the rendering pipeline to prepare for
the construction of the shadow volumes and the modifications to the Unreal Engine
that make this possible. In Section 3.2 we discuss the actual construction of a shadow
volume and the steps to make the custom render targets accessible from the Unreal editor.
Finally, in Section 3.3 we show how to use these render targets to apply the shadow
volume technique to the scene in the editor.

3.1 Custom Shaders in Unreal Engine 4

3.1.1 Implementation Approach

To use custom HLSL shader files in the Unreal Engine, the communication between the
engine, the game and the shaders have to be set up. In the community surrounding the
Unreal Engine there is a recurring interest in using custom shading algorithms. Yet,
only a handful of actual realizations of such ideas exist, and even less tutorials are
available that explain the implementation details developers have to be aware of. One
very helpful starting point can be found in [43]. This demonstration however only shows
the use of custom compute shaders and pixel shaders within the Unreal Engine. Our
exhaustive online research did not yield any results about documentation or other kind
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of available information on how to enable the use of custom geometry shaders. Therefore,
we gathered all implementation details for this project through a meticulous code review
of the Unreal Engine source code. Each source file created in the implementation process
includes detailed explanations about what steps are necessary to enable the use of the
custom shader stages in the form of code comments, meaningful variable and method
naming conventions and explicit engine source overrides. Our ShadowVolumePlugin class
serves as a wrapper for the shader and provides means of transferring data between the
editor and the shader and of executing draw commands. Our ShadowVolumeShader class
contains all declaration and tools needed for the shader file to be loaded, integrated and
used with the engine.

3.1.2 Implementation Details

We built our implementation upon one of the pre-packaged Unreal Engine templates.
From the templates that are part of a standard Unreal Engine installation, the First
Person Template [44] is one that is highly suitable for the task at hand. This has several
reasons: This template is available out-of-the-box as a C++ template (and not restricted
to Unreal Engine’s own blueprint customization). This enables the integration of the
shader plugin by providing the possibility to implement helper methods for preparing
model mesh and viewport data. The fist person template also has a well usable pre-
defined scene with a small arena, movable obstacles and a first person player character. It
provides working game logic, including physics, controls and other behavior for the player
character and for the interactions with other scene objects. Both the implementation and
the evaluation steps benefit from this pre-existing functionality and content contained in
the template.

To construct the shadow volume, following the approach described in Subsection 2.1.1,
an appropriate data structure has to be defined that contains adjacency information
about which two faces share a particular edge. We need this information in order to
find the silhouette edges of the shadow-casting model from the point of view of the
light source. We have to do this in accordance with the specific details of the rendering
pipeline of the Unreal Engine, meaning that it is actually two data structures that
we need to employ: One representation in the game world and one in the rendering
pipeline. Our solution for the representation used in the game world is a custom, in-
termediary structure. We modeled it after the halfedge mesh representation [45]. We
added a custom method to the character actor class provided in the template project
that contains the functionality for the construction of this structure from game mod-
els. (AShadowVolume414Character::SetBuffers). To achieve this, we pass a pointer to
the main UStaticMeshComponent [46] of the game world object to this method, from
which we extract all unique vertices. We insert them into a vertex vector that we use
as vertex position buffer. We use the TMap [47] type for the halfedge-like edge map.
In this map, keys are 2D vectors, containing the indices of two vertices making up a
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3.1. Custom Shaders in Unreal Engine 4

halfedge, while the associated value is the index of the vertex opposite of the halfedge.
We insert all halfedges into the container in this manner. In a final step, we use this
map to query the adjacent vertex indices for every vertex in the aforementioned vertex
position buffer and construct the index buffer according to primitive topology require-
ments [48], as detailed in the following paragraph. Our implementation considers one
world actor at a time as shadow caster. This is motivated by the aim of our imple-
mentation to prove the concept of implementing shadow volumes in Unreal Engine. To
achieve this goal, the proposed setup is sufficient, demonstrative and has a reasonable
performance. There are some limitations imposed by it, which we discuss in Section 4.3.
In Section 5.2 we present an outlook on possible future work to overcome these limitations.

To be able to use the newly constructed mesh representation in the geometry shader stage
of the graphics hardware, we have to pass it through the RHI system of the Unreal Engine
to the underlying graphics API in a way that retains the adjacency information. As
discussed in Subsection 2.2.3, the Unreal Engine includes rendering hardware interfaces to
different lower-level graphics APIs, such as OpenGL, Direct3D, etc. [42]. The Direct3D
input assembler stage provides a number of pre-defined primitive topologies, contained
in the D3D_PRIMITIVE_TOPOLOGY enumerated type[48]. Of the types available in
Direct3D 11, four can be used to include adjacency information. Two of these are line
types, not suitable for the goals of our project. The other two are versions of the triangle
list and the triangle strip topology with additional adjacency information encoded in
the index buffers. Figure 3.1 shows the way the index buffers have to be set up for
these two primitive types. To make use of these topologies in the geometry shader stage,
we have to create the adjacency index buffer according to the specifications detailed in
[48]. In the next step, we have to provide the buffers to the graphics hardware along
with information about the specific topology, so that the information can be interpreted
accordingly. However, the exploratory implementation revealed that the Unreal Engine
does in fact not include the possibility to declare triangle list with adjacency or trian-
gle strip with adjacency as the desired topology. This can be observed in the Unreal
Engine source code in any of the RHI modules, but specifically at the two methods
modified for this project (D3D11Commands::GetD3D11PrimitiveType and RHIUtili-
ties::GetVertexCountForPrimitiveCount). There are several engine components involved
in passing on the requested topology information, leading from higher to lower levels, from
the renderer through the RHI to the graphics API (and to the hardware level). Unreal
Engine actively checks for the requested topology through the use of the RHI utilities.
The engine disallows any member of the aforementioned D3D_PRIMITIVE_TOPOLOGY
enumerated type that is not explicitly listed in the RHI utilities.
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Figure 3.1: Direct3D primitive topologies including adjacency information. The numbers
show how the vertex indicies have to be inserted into the index buffer in order for the
Direct3D API to interpret them correctly. Reprinted from [48].

3.1.3 Engine Core Modifications

Since the RHI implementations do not contain any of the topologies needed, keeping
the implementation of shadow volumes to a self-contained engine plugin is not feasible.
Because of this, we propose a complementary core modification of certain engine modules.
Since the RHI implementations, as explained above, do not include the necessary formats,
it is necessary to modify all of them to retain Unreal Engines platform independence.
For this exploratory analysis we chose to modify the Direct3D 11 RHI to demonstrate
the concept. It is possible to implement similar modifications in an analogue manner in
the other RHI modules. In the case of other Direc3D versions this can be accomplished
by copying the corresponding sections. As for other Unreal Engine RHI implementations,
like OpenGL, etc., additional research is needed to determine the corresponding primitive
topologies. If no one-to-one structural matches exist in an RHI, we can modify the index
and/or vertex buffer output of the algorithm responsible to convert Unreal Engine world
objects into corresponding topological structures.

To accommodate for the Unreal Engine not providing a way of using the required
topologies, we propose to convert one of the pre-existing definitions into a triangle
list with adjacency, and another one into a triangle strip with adjacency topology.
Converting topology types that are already in Unreal Engine instead of adding new

18



3.2. Shader Stages

types is motivated by two different circumstances: First, the Unreal Engine is de-
pendent on a complex interplay between different modules, all of which would need
enumeration and method extensions to incorporate a new topology type. Second, the
two particular Unreal Engine EPrimitiveType [49] enumerators that we propose to re-
purpose for triangle list/strip with adjacency (PT_26_ControlPointPatchList and
PT_27_ControlPointPatchList) are not used by other parts of the engine, so there
are no complications to be expected from modifying these topology types. Only three
Unreal Engine 4.14 source files, containing code for skeletal mesh handling, static mesh
rendering and landscape rendering, make use of one such type (PT_12)), in contexts re-
lated to tessellation. The Unreal Engine documentation [3] does not specify any particular
usage of the EPrimitiveType [49]by the engine. Since adding a new topology type would
mean an unreasonably extensive engine modification, and at the same time there are types
presumably reserved for extensibility, we propose the aforementioned type modifications
on the PT_26_ControlPointPatchList and PT_27_ControlPointPatchList
in order to prove the concept of a possible implementation of shadow volumes in Unreal
Engine. We propose a cleaner but more extensive approach for future work in Section 5.2.
We modify these types to be accepted by the rendering thread, allowing us to forward
them to the Direct3D 11 RHI, where they are reconfigured to represent the triangle-list-
with-adjacency and the triangle-strip-with-adjacency Direct3D topologies respectively.
We modify the internal compatibility checks of the Unreal Engine (e.g. number of vertices
compared to length of index array, etc.) accordingly on the internal types as well. With
this solution, the model information can be directed through the Unreal Engine from the
highest levels (editor, game world) through the intermediaries (rendering thread) to the
lowest ones (RHI, graphics API) in a form suitable for shadow volume construction.

3.2 Shader Stages

After solving the problem of transferring model information with correct triangle adja-
cency topology to the graphics hardware, we can accomplish the actual shadow volume
construction in the different shader stages. There are three shader stages, which we use
while creating the volume and rendering it accessible for the editor: the vertex shader, the
geometry shader and the fragment shader stage. The main part of our implementation is
carried out in the geometry shader stage; therefore, we describe this stage in the most
detail.

Shaders for the Unreal Engine are contained in engine specific Unreal Shader Files
(USF), and have to be placed in the appropriate engine installation/build folder to be
loaded at engine startup. (Or through the recompile shaders command.) The shaders
are written in High-Level Shader Language (HLSL), from which the engine generates
platform specific shader code on demand in accordance with the environment[50]. We
organized our shader code incorporating all three shader stages in one file (ShadowVol-
umeTechnique.usf ).
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We set up the vertex shader in a way that allows the unmodified pass-through of
data to the geometry shader. The VertexData structure that we pass as input to the
vertex shader stage only contains the three dimensional vertex positions. In the geometry
shader the assembled geometry data is received as four adjacent triangles (six vertices), as
per specifications in the aforementioned Direct3D primitive topologies document [48]. A
very well written and exhaustive explanation of the details of this process can be found in
[23] and [24]. First, we calculate the edge vectors from the vertex position and adjacency
information. After this information is accessible, we query each edge for information
about the face normals of the two adjacent triangles. If one points toward the position of
the light while the other does not, we designate the edge as a silhouette edge. For such
an edge, we construct a new triangle strip in a reusable helper function, while we emit
the two adjacent triangles on the output triangle stream as part of the front cap or the
back cap respectively. We offset the former by a small bias to shift it below the surface
of the shadow caster while we move the latter by a large number to position the back
cap behind all possible scene objects. We move both along the direction vector from the
light source towards the vertices included in the edge, as described in Subsection 2.1.1.
However, we propose not to project the vertices of the back cap to infinity by the means
of a zero value in the w coordinate component. Rather, we offset them by a large bias,
while setting the w coordinate component value to 1. This is necessitated by our proposed
approach to the data transfer between the shader plugin and the Unreal Engine editor,
as described in the following Section 3.3.

We use the fragment (pixel) shader to configure the data in the render targets for
the editor to use. We pass no color information through the shader stages and into the
fragment shader. We insert only the depth values of each fragment into the current render
target, into pixel color channels. A detailed discussion of the necessitating circumstances
for this solution are provided in the following Section 3.3.

3.3 Applying Shadows to the Scene

Since the Unreal Engine has such a highly optimized and self contained rendering pipeline,
it proves to be difficult to access internal information of the rendering stages. For the
shadow volume algorithm to work in the form it is widely used [14], the depth information
from the scene has to be accessible to facilitate the incrementing/decrementing of the
stencil buffer values. However, since any draw call issued from an engine plugin is exe-
cuted before Unreal Engines own draw calls of the current frame, this depth information
is not ready when needed. Additionally, the data from the internal render targets of the
engine’s rendering pipeline is protected by the rendering pipeline and cannot be accessed
from a plugin. This means that we render the front and back faces of the shadow volume
in our plugin, but have no access to the scene depth data. Because of this fact, the scene
depth information cannot be used to set the stencil buffer values from the plugin. To the
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best of our knowledge, the only viable solution to this problem is to combine the data in
the editor, in form of a post-processing material, omitting the use of the stencil buffer.

This post-processing material (illustrated in Figure 3.2) is responsible for calculating
which regions of the current view are shadowed and applying the appropriate color changes.
In it, we compare the pixel color channel values of three render target textures to each
other: The render result of the front-faces and the one of the back-faces of the volume,
both containing depth values as color, as described above. The third one is a scene depth
texture that we render with the help of an Unreal Engine ScreenCaptureComponent2D
[51][52] tool. To align the view of the SceneCaptureComponent2D with the player’s view,
we connect it to the player’s viewport (as a child object of the FirstPersonCharacter-
>FirstPersonCameraComponent). The screen capture component allows for rendering
specific information into a render target defined in the editor. Such render targets can be
set up for scene color in different formats, normals or scene depth as color information.
We use this last format in the post-process material to compare depth values, since Unreal
Engine’s rendering pipeline hides all internal render targets where we could obtain this
data from. In the Unreal Engine however, this SceneDepth in R format is automatically
converted into world space distance measure rather than device-z coordinates. Therefore,
we alter the shader responsible for its rendering as well. The pixel shader responsible
for this particular depth rendering is located in the SceneCapturePixelShader.usf shader
file. It only renders this particular format, and since the Unreal Engine does not utilize
this type of rendering output internally, we can modify it without any side effects on
other program parts. The modification simply constitutes a bypass for the method call
to convert device-z coordinates into the world-space distance measure and writes them
directly into pixel values. In order to get the the best available precision for the shadow
calculations, we set up all three render targets in a FloatRGBA format. Furthermore,
in early implementation experiments we found that in order for the scene viewport, the
SceneCaptureComponent2D and the shader plugin render output to be consistent and
usable, the render targets have to be configured to the same dimensions as the viewport.
Even though matching values are determined before comparison through UV coordinates,
the render targets get misaligned, causing visual artifacts (misaligned/shifted shadow
regions), when we use their default (varying) sizes. Our solutions to this problem is to
set the dimensions of all three render targets at the BeginPlay event to the dimensions
of the current viewport, making them consistent in every program run, regardless of
current viewport size. Figure 3.3 illustrates the three different render targets: Subfigures
3.3.1 and 3.3.2 show the front and back faces of the shadow volume. They contain depth
values rendered as color information (all three color channels containing the same depth
value) created by our custom shader. Subfigure 3.3.3 shows the render target set up for
Unreal Engine’s ScreenCaptureComponent2D to contain depth values of the scene in the
red color channel. Subfigure 3.3.4 shows the results combined and applied to the scene
through our post-processing material.
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Figure 3.2: The post processing material responsible for deciding which screen pixel is in
shadow and applying the appropriate color. Starting point on the left is the ViewportUV
node aligning the compared pixels. Then, the three render target sampling nodes, followed
by the logical comparison nodes. Finally, the scene texture is darkened in shadow regions
and sent to the post-processing material output.
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Figure 3.3: Illustration of the render targets. Subfigures 3.3.1 and 3.3.2 show the
depth values of the front and back faces of the shadow volume, rendered into all three
color channels. Subfigure 3.3.3 shows scene depth values rendered by Unreal Engine’s
ScreenCaptureComponent2D into the red color channel. Subfigure 3.3.4 shows the values
combined and the shadow applied to the scene via the port-processing material.
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We achieve the comparison of the depth values via simple logical nodes implemented in
the post-processing material. We select pixels that we identify as being in the shadow
region from the SceneTexture post-process output and alter (darken) their color to
achieve the shadowed visuals. As a final step, we apply the material to the scene via a
PostProcessVolume [53] enclosing the entire test level.
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CHAPTER 4
Evaluation

We divide the presentation of our evaluations into four sections. Section 4.1 is a collection
of illustrations showcasing the results of our implementation of shadow volumes in Unreal
Engine. Section 4.2 contains a summary of the performance of our implementation. In the
final Section 4.3, we discuss the known issues and limitations of the current realization.

4.1 Results

The following figures showcase the results of our implementation of the shadow volumes
algorithm in Unreal Engine. We saved screenshots from our demo level running in the
editor that show the graphical fidelity and correctness of the shadows created with our
implementation.

• Figure 4.1 shows shadows of a spherical shadow caster object created with our
algorithm.

• Figure 4.2 shows one test setup. We use the sphere annotated as light source in
the image as omni-directional light source. The cube in the center is the shadow
caster. The shadow created with our algorithm is cast on the ground and on the
walls, annotated as volume shadow in the screenshot.

• Figure 4.3 showcases a visual comparison of the dynamic shadows created via
Unreal Engine’s own shadow mapping algorithm and the shadow created by our
implementation of shadow volumes. Two light sources are used to offset the two
shadows for visual comparison. The shadow closer to the player is the one created
by Unreal Engines algorithm and is annotated as Unreal shadow. The shadow in
the back is created with our implementation and is annotated as volume shadow.
The shadows created by our algorithm retain their sharp edges throughout their

25



4. Evaluation

whole length. It can be observed that the summation of shadows in the overlapping
shadowed areas are visually correct as well.

• Figure 4.4 allows a closer look at the scene shown in Figure 4.3. (The annotations
are identical.) We can observe the aforementioned sharp edges and the correct
summing of the two different shadows in the overlapping area.

• Figure 4.5 shows another example of a comparison similar to the one in Figure 4.3,
but the shadow caster is a cone.

• Figure 4.6 shows the same test setup as Figure 4.5. We captured this screenshot with
the shadow caster cone in motion. It can be observed that Unreal Engine’s shadow
(annotated as Unreal shadow) is blurry, while the shadow created by our algorithm
(annotated as volume shadow) is sharp. In this situation, this is undesirable. The
difference is the result of Unreal’s shadow receiving motion blur post-processing,
while the shadow created by our implementation does not. We present a suggestion
for possible future work in Section 5.2 to counter this issue by adding a motion
blur post-processing effect to our shadow volume shadows.

Figure 4.1: Shadows of a spherical shadow caster created with our algorithm cast on the
ground/wall.
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Figure 4.2: Exemplary test setup. A sphere is used as omni-directional light source (light
source). The cube in the center is set up as shadow caster. The shadow created by our
implementation can be observed on the ground and the walls.

Figure 4.3: Visual comparison of Unreal’s shadow map shadow (Unreal shadow) and our
shadow (volume shadow). A cube is set up as the shadow caster. Two light sources are
used to offset the two shadows for visual comparison. The sharp edges of our shadows
and the correct summation of shadows in the overlapping area can be observed.
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Figure 4.4: A closer look of the areas of interest from Figure 4.4.

Figure 4.5: Visual comparison of Unreal’s shadow map shadow (Unreal shadow) and our
shadow (volume shadow). The test setup is similar to the one shown in Figure 4.3 and
Figure 4.4. The sharp shadow edges created by our implementation can be observed even
more prominently, especially at the pointed top of the cone’s shadow.
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Figure 4.6: Visual comparison of Unreal shadow map shadow (Unreal shadow) and
our shadow (volume shadow) with the same test setup as in Figure 4.5. We captured
this screenshot with the shadow caster (cone) in motion. The shadow created by our
algorithm is still sharp, while Unreal’s own shadow map shadow is blurry. This is caused
by a motion blur post-processing effect, which our algorithm does not include.

4.2 Performance

To assess the performance and limitations of our implementation, we derived a test
level from the pre-packaged Unreal Engine First Person C++ Template. The benefits of
starting out from this template are discussed in Section 3.1. To test our implementation,
we added our plugin to the template, and assigned a post-process material as a blendable
to a post-process volume encompassing the entire game arena. We set up a sphere as
omni-directional point light, by naming it shVolLight. We use different predefined Unreal
static mesh objects to test our shadow volumes algorithm, by naming them occluder2.
The algorithm in our plugin searches among the AActor objects in the game world
for these two names to assign the roles of omni-directional light source and shadow
caster object respectively. Any object that has a static mesh component can be renamed
accordingly to take on the role of the shadow caster. The object designated as the light
source does not have to be an actual light source used in the Unreal Engine. It can be an
arbitrary world actor, since the program only takes into account the position to be used
in the shadow volume construction. This solution allows for convenient and flexible testing.

The performance of our implementation can be measured through the built in GPU pro-
filing tools of Unreal Engine. The hardware configuration used for testing was comprised
of the following main components: Intel(R) Core(TM) i7-3930K CPU @ 3.20Ghz, 32 GB
RAM, NVidia GTX 980ti. The output of the ProfileGPU tool is shown in Figure 4.7. It
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can be observed, that the impact of the shadow volume shader, with the shadow volume
construction and two draw calls (with front-face and back-face culling respectively) at
each frame takes 1.82 ms compared to the 7.22 ms needed for the rendering of the rest of
the scene, including the application of the post-process material. This means an increase
in rendering time of 25.21 percent per frame. This however is not the biggest impacting
factor. Since the Unreal Engine does not provide access to the scene depth texture in
any other usable way, we have to use the SceneCaptureComponent2D to obtain it, as
discussed in Section 3.3. It can be observed in the GPU profiler that this component
issues a command for another rendering of the complete scene, adding 7.54 ms additional
render time per frame, i.e. a render time increase of 104.43 percent alone. Because of
this, the additional render time of the whole technique is 9.36 ms per frame, i.e. an
increase of 129.64 percent.
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Figure 4.7: Frame render time contribution of rendering steps. It can be observed that
while the construction and rendering of the shadow volume only adds 25.21 percent
rendering time per frame, the SceneCaptureComponent2D adds an additional 104.43
percent, making it the biggest impact factor of our implementation on the performance.

4.3 Known Issues and Limitations

As we described in Section 2.2 and in Chapter 3, Unreal Engine imposes restrictions on
the transfer of render target data from the rendering thread to the editor and on the
use of the stencil buffer. Because of these restrictions, there are limitations present that
prevent the full realization of the stencil shadow volumes algorithm as proposed in the
related literature we presented in Subsection 2.1.1. The issues and limitations we present
in the following section are a result of our adaptation of the shadow volumes technique,
as discussed in Chapter 3.
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The biggest drawback of not being able to use stencil buffer operations is the fact
that our implementation yields correct shadows only for convex shadow caster objects.
Since we render the depth values of the front and back faces of the shadow volume into
the color channels of two textures, if the object has overlapping parts from the current
viewpoint, the depth information of some of the overlapping faces is lost. In such a
situation, the textures only contain one of the several corresponding depth values for
a particular fragment, making a correct evaluation impossible. This causes incorrect
shadows with any non-convex shadow caster.

Our implementation only considers one object in the scene as shadow caster. This
results in the behavior that although shadows are cast correctly onto other objects behind
the designated shadow caster, they appear to go through them. This causes the shadow
of the shadow caster object to show up on the second, third, etc. surface behind it in its
original shape. To mitigate this issue, all scene objects need to be occluders to the light
source. This would ensure that the shadow of the next larger object covers the shadow
of the object closer to the light source, removing this visually incorrect behavior. We
discuss possible future work to achieve this in Section 5.2.

Not being able to use stencil operations, specifically the Z-fail method causes another
problem as well. The shadow volume is rendered onto the shadowed side of the shadow
caster object in a wrong way. We illustrate this issue in Figure 4.8. We can observe
that the side of the shadow caster cube facing away from the light source and towards
the player’s view should be fully self-shadowed. Instead there is only a partial shadow,
with an incorrect self-shadowed region (marked and annotated in the image). This issue
occurs because in the erroneous region there are no two values to compare the scene
depth against. If the player’s viewpoint is located inside the shadow volume, only one
of the render targets contain values in that region, since the back cap of the object is
shifted into distance, as discussed in Section 3.2. Because of this, the player camera
is never positioned behind the back cap, so the front faces of the back cap are not
rendered. Therefore, if the player is inside the shadow, looking at the shadow caster, the
self-shadowing is wrong.
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Figure 4.8: Visual artifacts in object self-shadows. The region annotated as incorrect
self-shadow should be in shadow. This issue is caused by the fact that only one of the
two render targets contains a value in the corresponding region, since the back cap of the
volume is shifted into distance.

Additionally, even on the shadow casting objects surfaces where the self-shadows are
correct, z-fighting can sometimes occur. The z-fighting is due to insufficient precision
of the depth values when inserted into color channels and of the depth as color render
target provided by Unreal Engine’s SceneCaptureComponent2D. The results of this can
be observed in Figure 4.9

One rare, yet possible problem is the misalignment of shadows in the viewport. Al-
though this behavior is discussed in the Unreal developers community [54], no fix or
information is provided by Epic Games. This is an error which is elusive enough
that we can not illustrate it, as we cannot be reproduced at will. It happens because
although the SceneCaptureComponent2D is a child object of the FirstPersonCharacter-
>FirstPersonCameraComponent as explained in Section 3.3, on random program starts
it can get misaligned from it. This causes the movement of the two views (the actual
scene render produced by Unreal Engine and the depth render target created by the
SceneCaptureComponent2D) to only overlap when the view vector is parallel to the
ground, but shift apart with increasing angle. For our implementation this means that
the shadowed areas are not in the correct position, but also shifted with the view of the
SceneCaptureComponent2D. In the the Unreal forums users suggest that this error is
only present in the Play-in-Editor [55] test mode and does not occur in packaged games
[54]. We find that restarting the editor several times fixes the issue temporarily for the
Play-in-Editor mode as well.

Since the main scene rendering thread and the game thread are offset by one or two
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frames from each other, as discussed in Subsection 2.2.2, this delay can potentially be
noticed on lower-end test hardware when rotating the camera quickly. This make for a
"rubbery, flexible" feel of the shadows, catching up to the moving shadow caster object
once it has settled. On the test hardware we used for evaluation, this delay is barely
noticeable, since we achieved sufficient frame rates. (Frame render times can be observed
in Figure 4.7.)

Figure 4.9: Occasional z-fighting in object self-shadow regions caused by insufficient
precision of the depth values inserted into color channels.
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CHAPTER 5
Conclusion

The final chapter of this thesis is divided into two parts. Section 5.1 contains a summary of
our findings during the exploratory implementation process and the following evaluation
and test phase. In Section 5.2 we provide a brief outlook on how the method could be
improved in future work.

5.1 Summary

In this thesis we presented a way to implement the custom lighting algorithm of shadow
volumes in the state-of-the-art game development tool Unreal Engine. We based our
implementation process upon a comprehensive research into the Unreal Engine and a
shadow volumes algorithm. Through an exhaustive code review, we devised a method to
create a working example of a custom technique in the game engine.

We presented a way of integrating custom shaders, especially a custom geometry shader
in Unreal Engine through the use of an engine plugin. We showed that for the realization
of shadow volumes in Unreal Engine, the modification of core engine files is necessary.
We made these modifications, because the platform-independent Rendering Hardware
Interface (RHI) implementations of Unreal Engine do not include the primitive topology
types describing adjacency information between mesh triangles. This adjacency informa-
tion however is necessary to construct a shadow volume in the geometry shader stage. We
implemented a method in the plugin to create the appropriate data structure from Unreal
Engine’s game world actors to use for the construction of the volume. This method uses
a halfedge-like data structure where halfedges are associated with their opposing vertices
in a triangle. We discovered that stencil buffer operations are not possible due to the
necessary render target data not being available to our plugin. However, we devised a
way to implement our shader while omitting the use of stencil buffers. We used fragment
shaders to encode depth information in color channels, which we compared with scene
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depth values from Unreal Engine’s SceneCaptureComponent2D depth-as-color output.
We accomplished this via a post-processing material in the Unreal Engine editor. This
way we solved the problem of transporting data back to the editor from our plugin. We
used the same material to apply shadows to the scene.

We assessed the performance and limitations of our implementation in a test level
devised from a Unreal Engine template. We found that the biggest performance loss
is due to the use of the SceneCaptureComponent2D, while the construction and ren-
dering of the shadow volume happens in relatively acceptable time. We encountered
limitations and drawbacks caused by our implementation. Since we can not use stencil
buffers, the current implementation of our algorithm only yields correct shadows for
convex shadow caster objects. In its current form, our implementation only considers
one scene object as shadow caster. Our algorithm produces wrong self-shadowing and
z-fighting on the shadow caster due to the use of depth as color information instead of
stencil operations. Due to a not well documented bug in Unreal Engine, the SceneCap-
tureComponent2D used for scene depth rendering can on rare occasion get misaligned
from the player view, causing misaligned shadows. The delay between game and ren-
der thread in Unreal Engine can cause a temporary misalignment between the player
view and the shadows as well during quick player motion on low performance hardware.
We discuss possible future work to address some of these issues in the following Section 5.2.

Our implementation provides deep insight into the underlying structures and orga-
nization of a state-of-the-art, industry standard rendering pipeline, while also discovering
difficulties in modifying it for specific techniques. Although the implementation has still
room to improve on performance and graphical fidelity, it represents a proof of concept
for the possibility of customization.

5.2 Future Work

Concerning the issues and limitations discussed in Section 4.3, and taking into account
implementation details presented in Chapter 3, several improvements could be targeted
in future work.

The current implementation should be extended by devising an appropriate data structure
to hold and prepare all world actor objects to allow our implementation to consider them
as light occluders. All shadow caster objects need to have shadow volumes constructed
and those volumes need to be rendered into the render targets as well. This could be
achieved correctly by implementing a fragment shader that is able to merge the depth
values of the different volumes into one render target.

The issues of incorrect self-shadowing, z-fighting and of wrong shadows of non-convex
objects could be solved by finding a way to use stencil buffers. For shadow volumes and
other techniques that make use of the stencil buffer, it is essential to further investigate
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5.2. Future Work

ways of using the stencil buffer directly on the graphics hardware as described in the
related literature, and transfer only the results of the stencil operations back to the
editor. For this to be possible, both the scene depth values and the depth values of
the shadow volumes have to be made available in our plugin. This could be achieved
through some from of low level data transfer (copy) directly from the different render
targets of Unreal Engine’s main internal scene rendering. This would make using the
the SceneCaptureComponent2D unnecessary, solving the problem of random temporary
misalignment as well. Making the use of the SceneCaptureComponent2D obsolete would
be highly beneficial for the performance of our implementation, providing an almost 50
percent decrease in frame render times.

For the shadows created by our implementation to receive motion blur, additional
nodes could be inserted into the post-processing material responsible for applying them
to the scene. This could improve graphical fidelity, but would also add computational load.

For the Unreal Engine to retain platform independence, all RHI modules need to be
modified to include the primitive topologies containing adjacency information. In future
work, these could be overridden in the same manner as we proposed for the Direct3D 11
RHI. For a cleaner but more involved approach, the topologies could be added alongside
the original ones without re-purposing any of Unreal’s built-in types.
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